Test notebook

Write your post here.

In [1]:
from diofant import *
from diofant.abc import x
In [2]:
p = x**7 + sqrt(2)*x - I
r1 = RootOf(p, 1)
In [3]:
r1.is_real
Out[3]:
\begin{equation}\mathrm{False}\end{equation}
In [4]:
r1.is_imaginary
Out[4]:
\begin{equation}\mathrm{False}\end{equation}

... it's a complex number

In [5]:
r1.evalf()
Out[5]:
\begin{equation}-0.938939892790381 - 0.622375271319501 i\end{equation}
In [6]:
nroots(p)
Out[6]:
\begin{equation}\left [ -0.966114667772369 + 0.416533257705247 i, \quad -0.938939892790381 - 0.622375271319501 i, \quad -0.111375557241875 + 0.779695119900266 i, \quad - 1.14770621257202 i, \quad 0.111375557241875 + 0.779695119900266 i, \quad 0.938939892790381 - 0.622375271319501 i, \quad 0.966114667772369 + 0.416533257705247 i\right ]\end{equation}
In [7]:
str(_5) in [str(_) for _ in _6]
Out[7]:
\begin{equation}\mathrm{True}\end{equation}

Now some plots

In [8]:
%matplotlib inline
In [9]:
plot(sin(x)/x, (x, 0, 3*pi))
/usr/lib/python3/dist-packages/numpy/__init__.py:1: RuntimeWarning: invalid value encountered in double_scalars
  """
Out[9]:
<diofant.plotting.plot.Plot at 0x7fa1d7d2cac8>
In [ ]:
 

Test post

Write your post here.

Some list:

  • one
  • two
  • \(\lim\limits_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e\)
  • \(e^{ix} = \cos x + i\sin x\)
  • xxx